Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

mathmanliu 發問於 科學數學 · 1 十年前

質點下滑所需時間的計算(3)

質點受地心引力影響,沿光滑曲線(x, y)= ( 0.5L(t-sint), -0.5L(1-cost) )

由(0,0)下滑至(a, -L), a=πL/2, 問所需時間?

又若由曲線上任意點(p, q), 0<p<a , 下滑至同一時(a, -L),所需時間又為何?

更新:

由靜止下滑!

4 個解答

評分
  • 1 十年前
    最愛解答

    延續第二題 T = ∫ √{ [1 + (y')^2] /(2E/m - 2gy) } dx (0 - >b )...(1)

    利用代換z = A + v_0^2/2g - y﹐T = ∫ √{ [1 + (z')^2] /(2gz) } dx (0 - >b )

    由Euler's equation,取F = √{ [1 + (z')^2] /z }

    z'∂ F/∂ z' - F = 常數。邊界條件z(0) = v_0^2/2g, z(b) = A + z(0)

    ∂ F/∂ z' = z'/√{ z[1 + (z')^2] }﹐因此

    (z')^2/√{ z[1 + (z')^2] } - √{ [1 + (z')^2] /z } = -1/c (c是常數)

    整理:z(1 + z') = c^2 或 dz/dx = √(c^2/z - 1)

    x = ∫ √[z/(c^2 - z)] dz

    代z = c^2(sinϕ)^2

    x = 2c^2 ∫ (sinϕ)^2 dϕ = 2c^2 ∫ (1 - cos2ϕ) dϕ

    得x = (1/2)c^2(2ϕ - sin2ϕ) + d 及 z = (1/2)c^2(1 - cos2ϕ)

    c,d由A,b及v_0決定。而這條方程所表示的正是擺線。

    最後求T。用鏈式法則﹐z'(x) = z'(ϕ)/x'(ϕ)

    T = ∫ √{ [1 + (z'(ϕ)/x'(ϕ))^2] /(2gz(ϕ)) } x'(ϕ) dϕ (0 - >ϕ(b) )

    z'(ϕ)/x'(ϕ) = 2c^2sinϕcosϕ/c^2(1 - 2cosϕ) = 1/tanϕ

    所以﹐T = ∫ 2c/√(2g) dϕ (0 - >ϕ(b) ) = √(2A/g) [ϕ(b)/sin(ϕ(b)]

    若A = L﹐ϕ(b) = π/2 及 sin(ϕ(b) = 1

    則T = (π/2) √(2L/g)

    2011-04-17 10:47:11 補充:

    brochistonchrone problem 和 tautochrone problem 是兩個不同的問題。 brochistonchrone 是求一條最速下降曲線。tautochrone 是求一條質點在各個起始位置到某一點所需時間相同的曲線。 βραχίστος, brachistos - the shortest, ταὐτό, tauto - the same, χρόνος, chronos - time。雖然兩者都是擺線。

    資料來源: Calculus of variations and optimal control / A.A. Milyutin, N.P. Osmolovskii
  • Sam
    Lv 6
    1 十年前

    To : 教書的 ( 專家 5 級 )

    The tautochrone problem of cycloid

    We will solve it by Abel’s Method for The tautochrone problem.

    {* in the following: t for the parameter of the parameter equations [x(t)=t-sint, y(t)=1-cost] of cycloid and T for time.*}

    Abel's solution begins with the principle of conservation of energy — since the particle is frictionless, and thus loses no energy to heat, its kinetic energy at any point is exactly equal to the difference in potential energy from its starting point. The kinetic energy is 1/2mv^2, and since the particle is constrained to move along a curve, its velocity is simply v=ds/dT, where s is the distance measured along the curve. Likewise, the gravitational potential energy gained in falling from an initial height y(t0) to a height y(t) is mg(y(t0)-y(t), thus:

    1/2mv^2=1/2m(ds/dT)^2=mg(y(t0)-y(t))

    = > ds/dT=√[2g(y(t0)-y(t))]

    = > dT=(1/√[2g(y(t0)-y(t))]ds

    =(1/√(2g))[1/√(y(t0)-y(t))]ds.

    So

    dT=(1/√(2g))∫[t0→π] [1/√(y(t0)-y(t))]ds.

    For we only interest in the isochronous time of the problem, we omit the constant (1/√(2g)).

    T=∫[t0→π] [1/√(y(t0)-y(t))]ds …(*).

    For briefly, we also omit the constant L/2, the cycloid can express as:

    x(t)=t-sint,

    y(t)= cost-1

    where 0≦t<π.

    We know that

    ds=√(dx^2+dy^2

    =[√(2-2cost)]dt

    =√2[√(1-cost)]dt

    And y(t0)-y(t)

    =1/[(cos(t0)-1)-(cost-1]

    =1/[cos(t0)-cost]

    Substitute in (*), we have

    T=∫[t0→π]( √2[√(1-cost)]/ [cos(t0)-cost]dt

    {let u=t/2, 1-cost=2(sinu)^2, and cos(t0)-cost=cos(t0)-2(cosu )^2+1

    =( cos(t0)+1)-2(cosu )^2

    =2[(cos(t0)+1)/2-(cosu )^2]

    {let k^2= (cos(t0)+1)/2}

    =2[k^2- cosu )^2] }

    T=∫[t0/2→π/2] √2√(2(sinu)^2)/ √ {2[k^2- cosu )^2]}(2du)

    =2√2∫[t0/2→π/2] sinu/√[k^2- cosu )^2]du

    { let w=cosu dw=-sinudu }

    =2√2∫[arc cos(t0/2)→0] 1/√[k^2- w^2]dw

    =2√2 arc sin(w/k)|[ arc cos(t0/2), 0]

    =2√2[arc sin(cos(t0/2)/k)-arc sin(0/k)]

    { since k^2= (cos(t0)+1)/2=(cos(t0/2))^2,

    k= cos(t0/2)) }

    =2√2[arc sin(1)]

    =2√2[π/2]

    =√2.

    [[Done]]

    2011-04-14 19:02:35 補充:

    please refer to Tautochrone curve in WIKI.

  • 1 十年前

    擺線是最速下降曲線,而且具等時性,即下滑最快的曲線,

    個人覺得最特別的是由任意點開始下滑到達終點(a, -L)所需時間是相同的!

    2011-04-19 21:08:24 補充:

    本題兩提問:(1)由(0,0)下滑至(a, -L), a=πL/2, 問所需時間?

    (2)由曲線上任意點(p, q), 0

    2011-04-26 19:52:16 補充:

    本題特點是任意點下滑所需時間是相同的!

  • ?
    Lv 6
    1 十年前

    由(0,0)下滑至(a, -L), a=πL/2, 所需時間 T=sqrt(L/(2g))*pi;

    由曲線上任意點(p, q)下滑至(a, -L), a=πL/2, 所需時間 T=sqrt(L/(2g))*(pi-t_0), where t_0 is the time at which (x(t_0), y(t_0))=(p,q).

    2011-04-11 23:02:48 補充:

    大大的(1),(2), and(3)系列是極好的教材. 質點延擺線下滑才是最省時間.

    2011-04-13 23:03:28 補充:

    很期待"等時性"可以由數學計算裡表現出來.

    2011-04-15 08:55:01 補充:

    To Sam,

    Thank you for the correct answer. I was thinking the brochistonchrone problem and missed the initial condition at the beginning "K.E=P.E."

還有問題嗎?立即提問即可得到解答。