Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

?
Lv 4
? 發問於 科學及數學數學 · 6 年前

數學:方程根之和積問題 (1)

請看:

http://i.imgur.com/nsk4brn.jpg

----------------------------------------------------------------------------------

文字版:

It is given that α and β are the two distinct roots of the quadratic equation x² + kx + k = 0, where k is a constant.

Express 1/(α^n) + 1/(β^n) in terms of k and n.

更新:

數學:方程根之和積問題 (2)

2 個解答

評分
  • 6 年前
    最愛解答

    Let a = 1/α and b = 1/β.

    a and b are distinct roots of ky² + ky + 1 = 0

    root (a and b) = [-k ± √(k² - 4k)]/(2k) = [-1 ± √(1 - 4/k)]/2

    Then, 1/αⁿ + 1/βⁿ = aⁿ + bⁿ

    Any nicer form?

    2015-06-22 00:43:22 補充:

    The post is due soon.

    Do you expect any specific nicer form?

    1/αⁿ + 1/βⁿ = { [-1 + √(1 - 4/k)]ⁿ + [-1 - √(1 - 4/k)]ⁿ } / 2ⁿ

    2015-06-22 20:48:25 補充:

    Oh...

    I expect there would be better answers...

    2015-06-24 16:46:34 補充:

    x² + kx + k = 0, with distinct roots α and β.

    1 + k/x + k/x² = 0

    k(1/x)² + k(1/x) + 1 = 0

    Let a = 1/α and b = 1/β.

    Then, a and b are distinct roots of ky² + ky + 1 = 0

    roots a and b are [-k ± √(k² - 4k)]/(2k) = [-1 ± √(1 - 4/k)]/2

    Then, 1/αⁿ + 1/βⁿ

    = aⁿ + bⁿ

    = { [-1 + √(1 - 4/k)]ⁿ + [-1 - √(1 - 4/k)]ⁿ } / 2ⁿ

  • ?
    Lv 4
    6 年前

    I think the above form is acceptable.

還有問題嗎?立即提問即可得到解答。