Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

發問於 科學及數學數學 · 9 年前

Maths (measurement)

There is a rectangle with length 10cm and width 6cm, where all measurements are corrected to the nearest cm.

If the actual value of the perimeter is p cm, find the range of values of p.

Ans.:30<=p<34

Why the answer is not 30<=p<=34 ???

Please explain, thz!

2 個解答

評分
  • 9 年前
    最愛解答

    Because the data are to be corrected.

    If the length >10.4 e.g 10.45<--this will be corrected to 10.5 but not 10

    the width >6.4 e.g 6.45<--also will be corrected to 6.5 not 6

    So,we can know that ,the length and the width must be <=10.4 and <=6.4 respectively.

    The greatest value of p =(10.4+6.4)x2

    p =33.6.

    Therefore the value of p must<34,it can not be equal to 34.

  • ?
    Lv 7
    9 年前

    The range of length 9.5 <= x < 10.5

    The range of width 5.5 <= y < 6.5

    As p = 2(x + y)

    Min. of p = 2(9.5 + 5.5) = 30

    Max. of p < 2(10.5 + 6.5) = 34

    So, 30 <= p < 34

還有問題嗎?立即提問即可得到解答。