Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
Statistics
Normal distribution with mean 73 & standard deviation 8; find:
Formula: Z = (X - u)/ o { u=mean; o=standard dev.
(i) prob. of getting 91 OR less scores.
Assumed to be: P (X < = 91)
(ii) prob. of getting less than 91 scores.
Assumed to be: P (X < 91)
So, calculations & answers of (i) & (ii) should be different? Right?
Please calculate by applying the formula in detailed steps. TKS!
Tks myisland! 明白晒! 超讚講解! 問題post出4小時後才可選取答案為最佳。
1 個解答
- ?Lv 710 年前最愛解答
The value of (i) and (ii) should be the same as P(X = a) = 0 when x follows a continuous distribution.
Asnwer: (i) and (ii) 0.987776
(i) P(X <= 91)
= P[(X - 73)/8 <= (91 - 73)/8]
= P(Z <= 2.25)
= 0.987776
(ii) Similar as (i) but replace 'less than or equal to' by 'less than'