Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
independent events?
Two coins are placed in a bag. One of the them is a fair coin, while the other is a special coin with tails on both sides. One of the coins is picked from the bag at random and this coin is tossed 2 times. Let Ai(i=1,2) be the event that the coin comes up tail on the i-th toss.
A1 and A2 seem be independent, but the calculation shows
P(A2|A1) ≠P(A2) P(A1)
My question is why it is the case, are there any methods to know that they are independent without calculation?
are there any methods to know that they are independent or not without calculation?
P(A2 ∩ A1) ≠ P(A2) P(A1) 才是正確
3 個解答
- 匿名7 年前最愛解答
that's easy! do it!
- ?Lv 47 年前
If the picked coin is the biased one, than A1 and A2 have the same result.
A1 and A2 are related.
I don't get it. How come?
If the picked coin is the biased one, then A1 and A2 have the same result.
Why does this show A1 and A2 are related?
2014-10-15 16:33:34 補充:
A1 和 A2 (在 biased 的情況下)必為相同,即兩者不獨立。(於本情況)
So, if the biased coin is not 2-face such as the biased coin comes up tail with 2/3, are A1 and A2 independent?
2014-10-15 20:15:59 補充:
OK, Thanks.
- 知足常樂Lv 77 年前
你應該想講 P(A2 ∩ A1) ≠ P(A2) P(A1) 吧?
A and B are independent
iff Pr(A ∩ B) = Pr(A) Pr(B)
iff Pr(A | B) = Pr(A)
iff Pr(B | A) = Pr(B)
2014-10-15 12:38:02 補充:
你問的東西不難解答。
A1 和 A2 明顯是 dependent 的。
If the picked coin is the biased one, than A1 and A2 have the same result.
A1 and A2 are related.
This is the logic without showing mathematically.
2014-10-15 15:58:29 補充:
你要求一個 non-calculating approach 去想,所以我完全不用公式。
若 A1 和 A2 為 independent events,那麼一件事的發生不會影響另一件事的發生。
但 A1 和 A2 (在 biased 的情況下)必為相同,即兩者不獨立。(於本情況)
當然,其實你也要看 unbiased 的情況才知。
若你容許數學,那麼
Pr(A2|A1 and biased) = 1
但
Pr(A2) 不是 1
註:Ai 為第 i 次得 tail 的event
2014-10-15 15:59:34 補充:
當然,這裏只show到
A2 和 "A1 and biased" 不是 independent
所以要真正 show A1 和 A2 independent 都是 用 definition 和 數式比較好~
2014-10-15 19:45:12 補充:
也不是,那要再看詳細才知。
總之最好用數計。
以上可以不計因為明顯見到
Pr(A2|A1 and biased) = 1
但
Pr(A2) ≠ 1
即知 Pr(A2|A1 and biased) ≠ Pr(A2)