Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
Prove G is a group
Let G be a set with an operation * such that :
(1)G is closed under *
(2)* is associative
(3)There exists an element e in G such that e*x=x for all x in G
(4)Given x in G, there exists a y in G such that y*x=e
Prove that G is a group.(Thus you must show that x*e=x and x*y=e for e,y above)
1 個解答
- ?Lv 77 年前最愛解答
There exists an element e in G such that e*x=x for all x in G…(1)
Given x in G,there exists a y in G such that y*x=e…(2)
Given y in G,there exists a z in G such that z*y=e…(3)
First x*y=e*(x*y);from (1)
=(z*y)*(x*y);from (3)
=z*(y*x)*y;associative property
=z*e*y
=z*(e*y);associative property
=z*y
=e ; from(3)
Second, x*e = x*(y*x) from (2)
=(x*y)*x; associative property
=e*x; from above
=x; from (1)