Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

Lv 5
發問於 科學數學 · 7 年前

Prove G is a group

Let G be a set with an operation * such that :

(1)G is closed under *

(2)* is associative

(3)There exists an element e in G such that e*x=x for all x in G

(4)Given x in G, there exists a y in G such that y*x=e

Prove that G is a group.(Thus you must show that x*e=x and x*y=e for e,y above)

1 個解答

評分
  • ?
    Lv 7
    7 年前
    最愛解答

    There exists an element e in G such that e*x=x for all x in G…(1)

    Given x in G,there exists a y in G such that y*x=e…(2)

    Given y in G,there exists a z in G such that z*y=e…(3)

    First x*y=e*(x*y);from (1)

    =(z*y)*(x*y);from (3)

    =z*(y*x)*y;associative property

    =z*e*y

    =z*(e*y);associative property

    =z*y

    =e ; from(3)

    Second, x*e = x*(y*x) from (2)

    =(x*y)*x; associative property

    =e*x; from above

    =x; from (1)

還有問題嗎?立即提問即可得到解答。