Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

?
Lv 7
? 發問於 科學及數學數學 · 9 年前

數學問題 : 四元方程

Find all possible combinations of real values a, b, c and d that satisfy the set of equations:a + bcd = 2 … (1) b + acd = 2 … (2)c + abd = 2 … (3)d + abc = 2 … (4)

2 個解答

評分
  • ?
    Lv 7
    9 年前
    最愛解答

    By (1) , a = 2 - bcd , substitute into (2) , (3) , (4) : b + (2 - bcd)cd = 2 ...... (2)

    c + (2 - bcd)bd = 2 ...... (3)

    d + (2 - bcd)bc = 2 ...... (4)

    b(1 - c²d²) = 2(1 - cd) ...... (2)

    c(1 - b²d²) = 2(1 - bd) ...... (3)

    d(1 - b²c²) = 2(1 - bc) ...... (4)

    b(1 + cd) = 2 ...... (2)

    c(1 + bd) = 2 ...... (3)

    d(1 + bc) = 2 ...... (4)

    b = 2 - bcd ...... (2)

    c = 2 - bcd ...... (3)

    d = 2 - bcd ...... (4)

    b = c = dSubstitute into (1) , (2) :a + b³ = 2 ...... (1)

    b + ab² = 2 .....(2)

    By (1) , a = 2 - b³ , substitute into (2) :b + (2 - b³)b² = 2

    b⁵ - 2b² - b + 2 = 0

    (b - 1)² (b + 1) (b² + b + 1) = 0

    b = ± 1

    a = b = c = d = 1

    or

    a = 3 , b = c = d = - 1 Similarly ,

    b = 3 , a = c = d = - 1

    or

    c = 3 , a = b = d = - 1

    or

    d = 3 , a = b = c = - 1

    2012-12-03 18:23:29 補充:

    The above result is Case 1 : None of (1 - cd , 1 - bd , 1 - bc) = 0

    Sorry for missing Case 2 : If any one of (1 - cd , 1 - bd , 1 - bc) = 0

    b(1 - c²d²) = 2(1 - cd) .. (2)

    c(1 - b²d²) = 2(1 - bd) .. (3)

    d(1 - b²c²) = 2(1 - bc) .. (4)

    Say (1 - cd) = 0 , then cd = 1 , gives

    2012-12-03 18:24:08 補充:

    b + a = 2 ..... (2)

    c + abd = 2...(3)

    d + abc = 2 ..(4)

    (3) - (4) :

    (c - d) - ab(c - d) = 0

    (c - d)(1 - ab) = 0

    When c = d , then c = d = ± 1 since cd = 1

    When ab = 1 , by (3) , c + d = 2 , then c = d = 1 since cd = 1

    All in all , c = d = ± 1 , so we have

    b + a = 2 ..... (2)

    1 + ab = ± 2 .(3)

    2012-12-03 18:24:53 補充:

    Substitute (2) into (3) :

    1 + a(2 - a) = ± 2

    a² - 2a + 1 = 0 for c = d = 1 or a² - 2a - 3 = 0 for c = d = - 1

    a = 1 for c = d = 1 or a = - 1 or a = 3 for c = d = - 1

    a = b = c = d = 1 or b = 3 , a = c = d = - 1 or a = 3 , b = c = d = - 1

    2012-12-03 18:25:22 補充:

    Similarly ,

    1 - bd = 0 gives

    a = b = c = d = 1 or a = 3 , b = c = d = - 1 or c = 3 , a = b = d = - 1

    1 - bc = 0 gives

    a = b = c = d = 1 or a = 3 , b = c = d = - 1 or d = 3 , a = b = c = - 1

    2012-12-03 18:26:05 補充:

    a = b = c = d = 1

    a = 3 , b = c = d = - 1

    b = 3 , a = c = d = - 1

    c = 3 , a = b = d = - 1

    d = 3 , a = b = c = - 1

    2012-12-03 18:28:08 補充:

    b = 3 , a = c = d = - 1

    or

    c = 3 , a = b = d = - 1

    or

    d = 3 , a = b = c = - 1

    是據 a , b , c , d 的對等地位得出。

    2012-12-05 18:53:48 補充:

    但得出這些Case1的解後要全部捨棄(雖然它們真是解),

    因為它們都使(1 - cd , 1 - bd , 1 - bc) = (0 , 0 , 0)。

    2012-12-05 18:56:38 補充:

    解法二 :

    明顯 a , b , c , d ≠ 0

    a² + abcd = 2a … (1)*a

    b² + abcd = 2b … (2)*b

    c² + abcd = 2c … (3)*c

    d² + abcd = 2d … (4)*d

    a² - 2a = b² - 2b = c² - 2c = d² - 2d = - abcd

    令 a² - 2a = b² - 2b = c² - 2c = d² - 2d = k(常數)

    則 x² - 2x = k 的 x 有 1 或 2 個實根值。

    2012-12-05 18:59:01 補充:

    故 a = b = c = d 或 不妨設 (a = b) ≠ (c = d) 或 a = b = c ≠ d。

    當 a = b = c = d ,

    得 a + a³ = 2 ... (1)

    (a - 1)(a² + a + 2) = 0

    a = 1

    ∴ (a , b , c , d) = (1 , 1 , 1 , 1)

    當 (a = b) ≠ (c = d) , 得

    a + ac² = 2 ... (1)

    c + a²c = 2 ... (3)

    2012-12-05 18:59:47 補充:

    (1) - (3) :

    (a - c) - ac(a - c) = 0

    (a - c)(1 - ac) = 0

    ac = 1 因 a ≠ c , 得

    a + c = 2 ... (1) , 代入(3) :

    (2 - a) + a²(2 - a) = 2

    a³ - 2a² + a = 0

    a(a² - 2a + 1) = 0

    a = 1 因 a ≠ 0

    故 c = 1

    則 a = c 茅盾!

    當 a = b = c ≠ d , 得

    a + a²d = 2 ... (1)

    d + a³ = 2 ... (4)

    2012-12-05 19:00:23 補充:

    代(4) 入(1) :

    a + a²(2 - a³) = 2

    a⁵ - 2a² - a + 2 = 0

    (a - 1)² (a + 1) (a² + a + 2) = 0

    a = 1 , d = 1 , a = d 不合

    a = - 1 , d = 3

    2012-12-05 19:00:46 補充:

    ∴ (a , b , c , d) = (- 1 , - 1 , - 1 , 3)

    同理可得

    (a , b , c , d) = (- 1 , - 1 , 3 , - 1)

    (a , b , c , d) = (- 1 , 3 , - 1 , - 1)

    (a , b , c , d) = (3 , - 1 , - 1 , - 1)

    綜上 , (a , b , c , d) 共 5 組解。

  • ?
    Lv 7
    9 年前

    b(1 - c²d²) = 2(1 - cd) ⇒ b(1 + cd) = 2 ???

    also b = c = d cannot lead to

    b = 3 , a = c = d = - 1

    or

    c = 3 , a = b = d = - 1

    or

    d = 3 , a = b = c = - 1

    略欠工整???

還有問題嗎?立即提問即可得到解答。