Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
數學問題 : 求x的值
----------------------------------------------------------------------------------------------
The solution should be in terms of p and there is some restriction on p also...
5 個解答
- ?Lv 79 年前最愛解答
The restriction is different for different cases:
Case 1: If p <= 1, the restriction is x >= 1 or x <= -1
Case 2: If p > 1, the restriction is x >= √p or x <= -√p
since both x^2 - p and x^2 - 1 must be non-negative.
2012-11-23 15:27:14 補充:
And do we need to find solution of x in terms of p?
2012-11-23 15:28:36 補充:
And x should be non-negative since √(x^2 - p) and √(x^2 - 1) are non-negative
2012-11-26 16:54:00 補充:
----------------------------------------------------------------------------------
圖片參考:http://i1191.photobucket.com/albums/z467/robert197...
2012-11-26 17:40:12 補充:
For p = 4/3:
x = 2/√3 by the formula x = (4-p)/√[8(2-p)]
Sub back into the original equation:
LHS = RHS = 2/√3
Hence the solution x = (4-p)/√[8(2-p)] is valid for 0 <= p <= 4/3, and no solution for p < 0 and 2 > p > 4/3
資料來源: 原創答案 - 諸葛諭遜Lv 59 年前
(x^2 - p)^(1/2) + 2(x^2 - 1)^(1/2) = x
==> (x^2 - p)^(1/2) = x - 2(x^2 - 1)^(1/2)
==> x^2 - p = x^2 - 4x(x^2 - 1)^(1/2) + 4(x^2 - 1) ............. [square both sides]
==> 4x(x^2 - 1)^(1/2) = p + 4(x^2 - 1)
==> 16(x^2)(x^2 - 1) = p^2 + 8p(x^2 - 1) + 16(x^2 - 1)^2 ... [square both sides again]
Let y = x^2 - 1, therefore, x^2 = y + 1, so
16y(y + 1) = p^2 + 8py + 16y^2
==> 16y - 8py = p^2
==> 16y - 8py + 16 - 8p = p^2 - 8p + 16
==> (16 - 8p)(y + 1) = (p - 4)^2
==> (16 - 8p)x^2 = (p - 4)^2
As x cannot be negative, therefore,
x = |p - 4|/(16 - 8p)^(1/2) ... [provided that (p < 2) as (16 - 8p) must be positive.]
- 9 年前
(x^2-p)^(1/2) + 2(x^2-1)^(1/2) = x
Sub x = 1 :
(1-p)^(1/2) + 2(1-1)^(1/2) = 1
(1-p)^(1/2) = 1
1-p = 1
p = 0
Sub p = 0 :
(x^2)^1/2 + 2(x^2-1)^(1/2) = x
x + 2(x^2-1)^(1/2) = x
2(x^2-1)^(1/2) = 0
x^2-1 = 0
x=1
∴x=1
資料來源: me