Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

?
Lv 7
? 發問於 科學及數學數學 · 9 年前

數學問題 : 求x的值

----------------------------------------------------------------------------------------------

圖片參考:http://i1090.photobucket.com/albums/i376/Nelson_Yu...

更新:

The solution should be in terms of p and there is some restriction on p also...

5 個解答

評分
  • ?
    Lv 7
    9 年前
    最愛解答

    The restriction is different for different cases:

    Case 1: If p <= 1, the restriction is x >= 1 or x <= -1

    Case 2: If p > 1, the restriction is x >= √p or x <= -√p

    since both x^2 - p and x^2 - 1 must be non-negative.

    2012-11-23 15:27:14 補充:

    And do we need to find solution of x in terms of p?

    2012-11-23 15:28:36 補充:

    And x should be non-negative since √(x^2 - p) and √(x^2 - 1) are non-negative

    2012-11-26 16:54:00 補充:

    ----------------------------------------------------------------------------------

    圖片參考:http://i1191.photobucket.com/albums/z467/robert197...

    2012-11-26 17:40:12 補充:

    For p = 4/3:

    x = 2/√3 by the formula x = (4-p)/√[8(2-p)]

    Sub back into the original equation:

    LHS = RHS = 2/√3

    Hence the solution x = (4-p)/√[8(2-p)] is valid for 0 <= p <= 4/3, and no solution for p < 0 and 2 > p > 4/3

    資料來源: 原創答案
  • ?
    Lv 7
    9 年前

    翻雷滾天 風卷殘雲 : check check x = 4/3

  • 9 年前

    ...... oh, my object is different to the question,

    I just find the range of x and p.....

  • 9 年前

    (x^2 - p)^(1/2) + 2(x^2 - 1)^(1/2) = x

    ==> (x^2 - p)^(1/2) = x - 2(x^2 - 1)^(1/2)

    ==> x^2 - p = x^2 - 4x(x^2 - 1)^(1/2) + 4(x^2 - 1) ............. [square both sides]

    ==> 4x(x^2 - 1)^(1/2) = p + 4(x^2 - 1)

    ==> 16(x^2)(x^2 - 1) = p^2 + 8p(x^2 - 1) + 16(x^2 - 1)^2 ... [square both sides again]

    Let y = x^2 - 1, therefore, x^2 = y + 1, so

    16y(y + 1) = p^2 + 8py + 16y^2

    ==> 16y - 8py = p^2

    ==> 16y - 8py + 16 - 8p = p^2 - 8p + 16

    ==> (16 - 8p)(y + 1) = (p - 4)^2

    ==> (16 - 8p)x^2 = (p - 4)^2

    As x cannot be negative, therefore,

    x = |p - 4|/(16 - 8p)^(1/2) ... [provided that (p < 2) as (16 - 8p) must be positive.]

  • (x^2-p)^(1/2) + 2(x^2-1)^(1/2) = x

    Sub x = 1 :

    (1-p)^(1/2) + 2(1-1)^(1/2) = 1

    (1-p)^(1/2) = 1

    1-p = 1

    p = 0

    Sub p = 0 :

    (x^2)^1/2 + 2(x^2-1)^(1/2) = x

    x + 2(x^2-1)^(1/2) = x

    2(x^2-1)^(1/2) = 0

    x^2-1 = 0

    x=1

    ∴x=1

    資料來源: me
還有問題嗎?立即提問即可得到解答。