Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
一題極限證明題(有點難度)
f is continuous on (0,∞) 0<a<b<∞, and for all h in (a,b)
f(nh)-->0 as n-->∞
then f(x)-->0 as x-->∞
2 個解答
- 1 十年前最愛解答
f(nh)-->0 as n-->∞
由這句話知道
f(x)大概是以下這種形式:
f(x)=a0/(x+b0) + a1/[(x+b1)^2+c1] + ......
an/[(x+bn)^n+cn]
如此一來便不用管h的大小了
當然f(x)-->0 as x-->∞ 也會成立
- 約翰教練Lv 41 十年前
Given an h such that 0<a<h<b<infinite
By the condition , given epsilon>0 , there exists N such that | f(nh) |<epsilon , whenever n > N
And by the same epsilon and N , we have that | f(nh) | <epsilon , whenever (nh) > (Nh)
Choose Nh = N' , then for the epsilon be given , there exists N' such that | f(x) | < epsilon , whenever x > N'
Since nh---> infinite as n---> infinite , for all h in the segment which is given , we can choose {x}=nb such that x is independent on h and | f(x) | < | f(nh) | < epsilon ,for x is large enough