Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
ABC is a triangle with angle C =90*.CD is drawn &D lies on AB such that angleCDA=angleCDB=90*.?
Prove that AC^2/BC^2=AD/BD
no proper reply yet. where are the top contributers?
4 個解答
- Sridhar RLv 61 十年前最愛解答
I think you have asked this question twice i have already answered this anyhow here is the proof
in triangle ACD
angle ACD + angle CAD = 90
in triangle ACB
angle CAB + ABC = 90
angle CAB = angle CAD same angle
therefore angle ACD = angle ABC --------------------------------(1)
consider the Triangles
ACD and CBD
angle ACD = angle CBD | angle ABC = angle CBD
angle ADC = angle CDB
so the two triangles are similar
so we have
AD/CD = AC/CB = DC/DB -----------------------------------2)
AD/DC = AC/BC
DC/BD = AC/BC | from 2
multiplying both
AD/DC * DC/BD = AC/BC * AC/BC
AD /BD = AC^2/BC^2 prooved
- 匿名1 十年前
Math is dull lol