Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
三角關係與餘弦定理
1.
Find the general soolution of
cos^2x [1+cos^2x+cos^3x+cos^4x+......cos^7x] = 0 without using arithmetic
or geometric sequence.
2.
In a triangle ABC , by using the cosine law , prove that A^n+B^n is NOT equal to C^n
1 個解答
- hawk_wing_1999Lv 61 十年前最愛解答
cos^2x [1+cos^2x+cos^3x+cos^4x+......cos^7x] = 0
∴cos^2x=0 or [1+cos^2x+cos^3x+......+cos^7x]=0
consider the range of cosx, which lies in the range of -1 and 1
∴-1<cosx<1
∴cos^2x, cos^4x, cos^6x must be larger than 0
There is only chance that cos^3x, cos^5x, cos^7x be negative if cosx is in the range of -1<cosx<0
However, in the range of -1<cosx<1, |cos^3x|<|cos^2x|, |cos^5x|<|cos^4x| and |cos^7x|<|cos^6x|
∴1+cosx+cos^2x+......+cos^7x must be >0
∴The final solution is cos^2x=0
cosx=0
x=360n90