Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

? 發問於 科學及數學數學 · 1 月前

Matha problem: how to do (b) i and ii, thanks?

Attachment image

1 個解答

評分
  • 1 月前
    最愛解答

    (a)

    L passes through (15, 5) and (12, 0), so its slope is (5 - 0)/(15 - 12) = 5/3.

    L' is perpendicular to L, so its slope is -3/5.

    L' also passes through Q(12, 0) because it is the point of intersection with L on the x-axis.

    The equation of L' is

    (y - 0)/(x - 12) = -3/5

    5y = 36 - 3x

    3x + 5y - 36 = 0

    (b)

    (i)

    The y-coordinate of G is given as k and G is on L'.

    Therefore, we can find the x-coordinate of G by putting y = k in L'.

    3x + 5k - 36 = 0

    3x = 36 - 5k

    x = (36 - 5k)/3

    That is, G = ( (36 - 5k)/3, k ), which is the centre of circle C.

    Circle C passes through Q(12, 0), so QG is the radius.

    Therefore, the equation of C is

    [x - (36 - 5k)/3]² + (y - k)² = QG² = [12 - (36 - 5k)/3]² + (0 - k)²

    x² - 2x(36 - 5k)/3 + (36 - 5k)²/3² + y² - 2yk + k² = 144 - 24(36 - 5k)/3 + (36 - 5k)²/3² + k²

    x² - 2x(36 - 5k)/3 + y² - 2yk = 144 - 24(36 - 5k)/3

    3x² - 2x(36 - 5k) + 3y² - 6yk = 432 - 24(36 - 5k)

    3x² - 2x(36 - 5k) + 3y² - 6yk = 432 - 864 + 120k

    3x² + 3y² - 2(36 - 5k)x - 6ky + 432 - 120k = 0

    (ii)

    C passes through A(4, 8), so put x = 4 and y = 8 into C to solve for k:

    3(4²) + 3(8²) - 2(36 - 5k)(4) - 6k(8) + 432 - 120k = 0

    k = 3

    Therefore, G = (7, 3).

    Note that P = (15, 5).

    The smallest circle which passes through P and G would be the one with PG being its diameter.

    This diameter is √[ (15 - 7)² + (5 - 3)² ] = √(64 + 4) = √68 = 2√17.

    The radius of this smallest circle is √17.

    The area of this smallest circle is π × (√17)² = 17π.

還有問題嗎?立即提問即可得到解答。