Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

?
Lv 4
? 發問於 科學及數學數學 · 7 年前

modular multiplication

(12x)mod147 = 7

is there any x in Z147(0,1,....,146) to satisfy the equation?

as far as I learned, If 12 has the multiplicative inverse in Z147,

x = (12^(-1) * 7)mod147

and gcd(12,147)=1, 12 has the multiplicative inverse in Z147 and it is Amod147,

where 12A+147B=1.

combine these two statements,

gcd(12,147)=1, x = (12^(-1) * 7)mod147

however, gcd(12,147)=3≠1, it implies that there exist some b in Z147,

(12x)mod147 ≠ b,

but I don't know whether b is 7 or not?

so, how do I deal with this kind of problem?

1 個解答

評分
  • 7 年前
    最愛解答

    You can think it in this way :As (12x) mod 147≡7 and (147x) mod 147≡0, you can re-write in this way,12x≡7 ⋯⋯⋯⋯⋯ (i)==> 144x≡84 ⋯⋯ (ii)147x≡0 ⋯⋯⋯⋯ (iii)(iii) - (ii), gets3x = -84==> 12x≡-336≡42Contradict with (i), so, no such x exist.

    2014-10-26 09:37:20 補充:

    Sorry, the last second written wrongly, it should be,

    ==> 12x≡-336≡-42≡105

還有問題嗎?立即提問即可得到解答。