Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
Solving Trig Identities (w/ fractions, poss. work on both sides)?
Okay, I'm lost and frustrated at this point. I seem to be one, inspiration, or step away from solving these type of equations, but it eludes me. The simpler ones, no prob, but when it comes to the following equations, I am foooked:
(-1/[tan - sec) + (-1[tan + sec]) = 2tan
(tan/[1 + cos]) + (sin[1- cos] = cot + sec*csc
(1 - sin)/(1 + sin) = sec^2 - 2sec*tan + tan^
If you know the answer, can you please, pleaseeeee show me all the steps and give me a little outline on your method? I need to see what steps I am not doing correctly or at all.
Verifying, checking, not solving, sorry. :D
1 個解答
- mohanrao dLv 71 十年前最愛解答
-1.................-1
_______+ ________
tan - sec...(tan + sec)
taking common Denominator
[ -tan - sec - tan + sec ]
_____________________
(tan^2 - sec^2)
-2tan/(-1)
= 2tan
2)
tan/(1+cos) + sin/(1 - cos)
= [tan(1 - cos) + sin(1 + cos)]/(1 - cos^2)
= [tan - tan cos + sin + sin cos ]/ sin^2
= [ (sin/cos) - sin + sin + sin cos ] /sin^2
= [sin + sin cos^2 ] /sin^2 cos
= (1/sin cos ) + (cos /sin )
= cot + csc sec
3)
(1 - sin)/(1 + sin)
= (1 - sin)^2 /(1 - sin^2 )
= [1 + sin^2 - 2sin ] /cos^2
= sec^2 + tan^2 - 2 tan sec