Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
question about M.I
Prove , by mathematical induction , that
1x3+2x3^2+3x3^3+......+n(3^n)=3/4(3^n(2n-1)+1)for all positive integer n .
SP: You only need to do the part about......
Assume S(k) is true ...and below thanks
2 個解答
- 1 十年前
Assume S(k) is true,
i.e. 1x3+2x3^2+3x3^3+......+k(3^k)=3/4(3^k(2k-1)+1)
When n=k+1,
1x3+2x3^2+3x3^3+......+k(3^k) + (k+1) * 3^ (k+1)
= 3/4(3^k(2k-1)+1) + (k+1) * 3^ (k+1)
= 3/4[3^k(2k-1)+1 + (k+1) * 3^k * 3 * 4/3 ]
= 3/4[3^k(2k-1)+1 + 4(k+1) * 3^k ]
= 3/4[3^k(2k-1+ 4(k+1)) + 1 ]
= 3/4(3^k(2(k+1)-1)+1)
so S(k+1) is also true
2007-10-18 21:45:41 補充:
sorry, some typing mistake for the last lineit should be ---= 3/4[3^k(6k 3) 1 ]= 3/4[3^(k 1) (2k 1) 1 ]= 3/4[3^(k 1) (2(k 1)-1) 1]