Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。

? 發問於 Science & MathematicsMathematics · 6 年前

How do I find a polynomial function f(x) of degree 3 with real coefficients?

How do I find a polynomial function f(x) of degree 3 with real coefficients that has a zero of 0 and zero of 1 having multiplicity 2?

3 個解答

相關度
  • 6 年前
    最愛解答

    Write down the zeroes you want to have:

    x = 0

    x = 1

    x = 1

    (We write down x = 1 twice because it has multiplicity 2):

    Rewrite those as equations equal to zero:

    x = 0

    x - 1 = 0

    x - 1 = 0

    Now simply multiply those 3 expressions together:

    x(x - 1)(x - 1) = 0

    That's your function:

    f(x) = x(x - 1)(x - 1)

    or

    f(x) = x(x - 1)²

    But they may want you to expand that by multiplying. First multiply (x - 1)(x - 1):

    f(x) = x(x² - 2x + 1)

    Then distribute the x through the parentheses:

    f(x) = x^3 - 2x² + x

    To verify the answer, look at the graph below. It crosses the x-axis at x=0 and touches the x-axis at x=1 (multiplicity 2).

  • 6 年前

    x^2(x - 1) will have two zero at 0 and one zero at 1

  • 匿名
    6 年前

    Use the zeroes to create three factors, and then multiply them together. Each root r gives you a factor (x-r).

還有問題嗎?立即提問即可得到解答。