Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
Maths Question
When a polynomial P(x) is divided by x+1 and x+2, the remainders are -7 and -25 respectively. Find the remainder when P(x) is divided by (x+1)(x+2).
1 個解答
- 不想單身Lv 510 年前最愛解答
By remainder theorem,
since polynomial P(x) is divided by x+1 , remainder is -7.
so P(-1) = -7
since polynomial P(x) is divided by x+2, remainder is -25.
so P(-2) = -25
Let P(x) = (x+1)(x+2) Q(x) + R(x) , where Q(x) is the quotient and R(x) is the remainder.
since P(x) is divided by (x+1)(x+2), deg [(x+1)(x+2)] = 2 , so deg [R(x)] < 2,
Hence, let R(x) = ax + b,
since P(-1) = (-1+1)(-1+2) Q(x) + a(-1) + b = -a + b = -7
and P(-2) = (-2+1)(-2+2) Q(x) + a(-2) + b = -2a + b = -25
so, a = 18, b = 11,
R(x) = 18x + 11,
i.e. the remainder is 18x + 11.
希望幫到你 :)
資料來源: me