Yahoo 知識+ 將於 2021 年 5 月 4 日 (美國東岸時間) 停止服務,而 Yahoo 知識+ 網站現已轉為僅限瀏覽模式。其他 Yahoo 資產或服務,或你的 Yahoo 帳戶將不會有任何變更。你可以在此服務中心網頁進一步了解 Yahoo 知識+ 停止服務的事宜,以及了解如何下載你的資料。
Integral with trig functions?
int (sin^6x)(cos^5x) dx
Should i split up the 6x or the 5x??? or BOTH!!!? AHHHH
2 個解答
- 匿名1 十年前最愛解答
you want to write it as (sinx)^6(cosx)^5 = (sinx)^5((cosx)^2)^2*cosx = (sinx)^5(1-(sinx)^2)^2 and do a u-substitution where u=sinx. So du=cosxdx. Then you have the integral of u^5(1-u^2)^2du =
integral of u^5(1-2u^2+u^4)du =
integral of u^5-2u^7+u^9 du=
1/6 u^6 - 1/4 u^8 + 1/10 u^10 +c
Now plug sinx back in for u and you are done.
You always want to convert the trig function with an odd power and leave the other one alone, that way you end up with exactly one sin or cos and the rest are all sin or cos so the u-sub works. If they are both to odd powers, pick whichever one you want
If they are both to even powers, cry. Not really, but it is more work, you have to use the half-angle identities to convert them all to sin2x and cos2x. Then apply the same rules. Good luck!
- Ed ILv 71 十年前
â« sin^6 x cos^5 x dx = â« sin^6 x cos^4 x cos x dx = â« sin^6 x (1 - sin^2 x)^2 cos x dx = â« sin^6 x (1 - 2 sin^2 x + sin^4 x) cos x dx
Let u = sin x and du = cos x dx
â« (u^6 - 2 u^8 + u^10) du = u^7/7 - 2u^9/9 + u^11/11 = sin^7 x/7 - 2 sin^9 x/9 + sin^11 x/11 + C